
Python Review Session

CS224N - Winter 25

Stanford University
1

Two entwined snakes, based on Mayan representations.
However, named after Monty Python’s Flying Circus 😅

2

Charting a Course

3

Why Python?

1

Setting Up

2

Python Basics

3

Data Structures

4

Numpy

5

Practical Tips

6

Charting a Course

4

Setting Up

2

Python Basics

3

Data Structures

4

Numpy

5

Practical Tips

6

Why Python?

1

Why Python?

● Widely used, general purpose

● Easy to learn, read, and write

● Scientific computation functionality

similar to Matlab and Octave

● Used by major deep learning

frameworks (PyTorch, TensorFlow)

● Active open-source, many libraries!

5

The Python Interpreter

6

Python code → interpreted into bytecode (.pyc) → compiled by a VM implementation

into machine instructions (most commonly using C.)

“Slower”, but can run highly optimized C/C++ subroutines to make operations fast

Ex. Interactive Mode (line-by-line) Ex. Script Mode (.py file)

Language Basics

7

Interpreter always “respects” the types of each variable.

Interpreter keeps track of all variable types (strict handling)

Strongly
Typed

Types will not

be coerced

silently like in

JavaScript, Perl

1 + ‘1’ → Error!
Cases like float and int

addition are allowed by

explicit implementation

(no auto conversion)
[1, 2] + set([3]) → Error!

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language

Language Basics

https://medium.com/@pavel.loginov.dev/typing-in-python-strong-dynamic-implicit-c3512785b863
8

A variable is simply a value or object reference bound to a name.

Data types of variables are determined at runtime (flexible!)
Dynamically

Typed

Variables can be

assigned to values

of a different type.

def find(required_element, sequence):
 for index, element in enumerate(sequence):
 if element == required_element:
 return index
 return -1

print(find(2, [1, 2, 3])) # Outputs: 1
print(find("c", ("a", "b", "c", "d"))) # Outputs: 2 ✅ num = 1 # int

num = "One" # str ✅

https://medium.com/@pavel.loginov.dev/typing-in-python-strong-dynamic-implicit-c3512785b863

A Quick Check-In 🥳

🎯 In Python, what will the

following code output?

9

x = 5
y = "3"
print(x + y)

A. 8

B. "53"

C. TypeError

D. "53.0"

A Quick Check-In 🥳

🎯 In Python, what will the

following code output?

10

x = 5
y = "3"
print(x + y)

A. 8

B. "53"

C. TypeError

D. "53.0"

Charting a Course

11

Why Python?

1

Setting Up

2

Data Structures

4

Numpy

5

Python Basics

3

Practical Tips

6

Syntax Going Forward

Code is in Courier New.

Command line input is prefixed with ‘$’.

Output is prefixed with ‘>>’.

12

Python Installation

13

https://www.python.org/downloads/ 🥳

https://www.python.org/downloads/

Helpful Commands

Print out Version

$python --version

$python -v

$python -vv

Print out Location

$which python (mac, linux)

$where python (windows)

14

See Installed Libraries

$python -m pip list

Run in Different Modes

$python script.py

$python -i script.py

$python -c “print(‘hello there!’)”

 pip is Python’s

package installer

-m runs a module (ex. pip) as a script

-i remains in interactive

mode after running .py

-c runs one-liner code snippet

Environment Management

15

Problem

● Different versions of Python

● Countless Python packages

and their dependencies

● Different projects require

different packages → even

worse, different versions of

the same package!

Environment Management

16

Solution: Virtual Envs

● Keep multiple Python environments

that are isolated from each other

● Each environment

○ Can use different Python version

○ Keeps its own set of packages

(can specify package versions)

○ Can be easily replicated

Problem

● Different versions of Python

● Countless Python packages

and their dependencies

● Different projects require

different packages → even

worse, different versions of

the same package!

Solution 1: venv

17https://docs.python.org/3/library/venv.html

$python -m venv /path/to/new/virtual/env● Created on top of existing
installation, known as the
virtual env’s “base” Python

● Directory contains a specific
Python interpreter and
libraries, binaries which are
needed to support a project

● Isolated from software in other
virtual envs and interpreters
and libraries installed in OS

Creates a new directory → can activate (differs based on OS)

https://docs.python.org/3/library/venv.html

Create a new environment
$ conda create –n <environment_name>
$ conda create -n <environment_name> python=3.7
$ conda env create -f <environment.yml>

Activate/deactivate environment
$ conda activate <environment_name>
<...do stuff...>
$ conda deactivate

Export environment
$ conda activate <environment_name>
$ conda env export > environment.yml

Solution 2: Anaconda (or Miniconda)

Very popular Python

env/package manager

● Supports Windows,

Linux, MacOS

● Can create and

manage different

isolated envs

Choose specific
Python version

Export/create
from env files!

Basic Workflow

18

https://www.anaconda.com/download/

https://www.anaconda.com/download/

Installing Packages

pip installs only Python packages, conda installs packages which may contain software written in any language

🚨 Best to first use conda to install as many packages as possible and use pip to install remaining packages after.

conda install -n myenv [package_name][=optional version number]

19

Install packages using pip in a conda environment (necessary when package not available through conda):

conda install -n myenv pip # Install pip in environment

conda activate myenv # Activate environment

pip install # Install package individually OR

[package_name][==optional version number]

pip install -r <requirements.txt> # Install packages from file

IDEs / Text Editors

Write a Python program in your

IDE or text editor of choice 😁
● PyCharm

● Visual Studio Code

● Sublime Text

● Atom

● Vim (for Linux or Mac)

In terminal, just activate virtual

environment and run command:

20
$ python <filename.py>

IDEs often have useful extensions! (ex. VS Code)

Python Notebooks

Jupyter Notebook

● .ipynb → write and execute

Python locally in web browser

● Interactive, re-execute code,

result storage, can interleave

text, equations, and images

● Can add conda environments

● Read-Eval-Print-Loop (REPL)

21

Google Colab

● Hosted Jupyter notebooks, run in
cloud, requires no setup to use,
provides free access to GPUs

● Comes with many Python
libraries pre-installed

● Can integrate with Git (pull/run),
Google Drive, local storage

● Tools > Settings > Misc > 😉😁

https://colab.research.google.com/

https://colab.research.google.com/

🎯 Matching time!

22

1. venv

2. Anaconda

3. Jupyter Ntbk

4. pip

A. Python package manager used to
install and manage libraries.

B. Tool for creating isolated Python
environments for dependency
management.

C. Distribution that simplifies package
and environment management,
designed for data science.

D. An interactive platform for writing
and running code alongside
visualizations and notes.

🎯 Matching time!

23

1. venv

2. Anaconda

3. Jupyter Ntbk

4. pip

A. Python package manager used to
install and manage libraries.

B. Tool for creating isolated Python
environments for dependency
management.

C. Distribution that simplifies package
and environment management,
designed for data science.

D. An interactive platform for writing
and running code alongside
visualizations and notes.

Language Basics

24

Why Python?

1

Setting Up

2

Data Structures

4

Numpy

5

Python Basics

3

Practical Tips

6

Common Operations

x = 10

y = 3

x + y

x ** y

x / y

x / float(y)

str(x) + “+”
+ str(y)

Declaring two integer variables

Comments start with hash

Arithmetic operations

Exponentiation

Dividing two integers

Type casting for float division

Casting integer as string and
string concatenation

>> 13

>> 1000

>> 3

>> 3.333…

>> “10 + 3”

25

Built-in Values

True, False

None

x = None

array = [1, 2, None]

def func():

return None

Usual true/false values

Represents the absence of something

Variables can be assigned None

Lists can contain None

Functions can return None

26

Built-in Values

and

or

not

if [] != [None]:

print(“Not equal”)

Boolean operators in Python written
as plain English, as opposed to &&,
||, ! in C++

Comparison operators == and !=
check for equality/inequality, return
true/false values

27

Spacing: Brackets → Indents

● Indents can be 2 or 4

spaces, but should be

consistent throughout

● If using Vim, set this

value to be consistent

in your .vimrc

def sign(num):
Indent level 1: function body
if num == 0:

Indent level 2: if statement body
print(“Zero”)

elif num > 0:
Indent level 2: else if statement body
print(“Positive”)

else:
Indent level 2: else statement body
print(“Negative”)

28

Code blocks are created using indents and newlines, instead of brackets like in C++

🎯 Debugging Derby

29

0length = 10
float width = 5.0

print "Beginning work..."

area = 0length * Width

if area > 20
 print("Area: " + area)

message = "Completed!'

Find the errors!

🎯 Debugging Derby

30

0length = 10
float width = 5.0

print "Beginning work..."

area = 0length * Width

if area > 20
 print("Area: " + area)

message = "Completed!'

can’t start var name with number
no explicit type declaration!

parentheses around print

capitalization mismatch “Width”

missing colon after condition
need to cast area to string type

mismatch in quotation (“ vs ‘)

🎯 Debugging Derby

31

length = 10
width = 5.0

print("Beginning work...")

area = length * width

if area > 20:
 print("Area: " + str(area))

message = "Completed!"

All fixed!🥳

Language Basics

32

Why Python?

1

Setting Up

2

Data Structures

4

Numpy

5

Python Basics

3

Practical Tips

6

Collections: List

Lists are mutable arrays (think std::vector).

names = [‘Zach’, ‘Jay’]
names[0] == ‘Zach’
names.append(‘Richard’)
print(len(names) == 3) >> True
print(names) >> [‘Zach’, ‘Jay’, ‘Richard’]
names += [‘Abi’, ‘Kevin’]
print(names) >> [‘Zach’, ‘Jay’, ‘Richard’, ‘Abi’, ‘Kevin’]
names = [] # Creates an empty list
names = list() # Also creates an empty list
stuff = [1, [‘hi’,’bye’], -0.12, None] # Can mix types

33

List Slicing

List elements can be accessed in convenient ways.

Basic format: some_list[start_index:end_index]

numbers = [0, 1, 2, 3, 4, 5, 6]
numbers[0:3] == numbers[:3] == [0, 1, 2]
numbers[5:] == numbers[5:7] == [5, 6]
numbers[:] == numbers == [0, 1, 2, 3, 4, 5, 6]
numbers[-1] == 6 # Negative index wraps around
numbers[-3:] == [4, 5, 6]
numbers[3:-2] == [3, 4] # Can mix and match

34

Collections: Tuples

Tuples are immutable arrays.

names = (‘Zach’, ‘Jay’) # Note the parentheses
names[0] == ‘Zach’
print(len(names) == 2) >> True
print(names) >> (‘Zach’, ‘Jay’)
names[0] = ‘Richard’ >> TypeError: 'tuple' object does not
support item assignment
empty = tuple() # Empty tuple
single = (10,) # Single-element tuple. Comma matters!

35

Collections: Dictionary

Dictionaries are hash maps.

phonebook = {} # Empty dictionary
phonebook = dict() # Also creates an empty dictionary
phonebook = {‘Zach’: ‘12-37’} # Dictionary with one item
phonebook[‘Jay’] = ‘34-23’ # Add another item
print(‘Zach’ in phonebook) >> True
print(‘Kevin’ in phonebook) >> False
print(phonebook[‘Jay’]) >> ‘34-23’
del phonebook[‘Zach’] # Delete an item
print(phonebook) >> {‘Jay’ : ‘34-23’}

36

Loops

For loop syntax in Python

Instead of for (i=0; i<10; i++) syntax in languages like C++, use range()

for i in range(10):
print(i)

>> 0
 1…
 8
 9

37

Loops

To iterate over a list
names = [‘Zach’, ‘Jay’, ‘Richard’]
for name in names:

print(‘Hi ‘ + name + ‘!’)

To iterate over indices and values
One way
for i in range(len(names)):

print(i, names[i])

A different way
for i, name in enumerate(names):

print(i, name)

>> Hi Zach!
 Hi Jay!
 Hi Richard!

>> 1 Zach
 2 Jay
 3 Richard

38

Loops

To iterate over a dictionary

phonebook = {‘Zach’: ‘12-37’, ‘Jay’: ‘34-23’}
for name in phonebook:

print(name)

for number in phonebook.values():
print(number)

for name, number in phonebook.items():
print(name, number)

>> Jay
Zach

>> 12-37
 34-23

>> Zach 12-37
 Jay 34-23

Note: Whether dictionary iteration order is guaranteed depends on the version of Python. 39

Classes

class Animal(object):
def __init__(self, species, age):

self.species = species
self.age = age

def is_person(self):
return self.species

def age_one_year(self):
self.age += 1

class Dog(Animal):
def age_one_year(self):

self.age += 7

Constructor `a =
Animal(‘human’, 10)`
Refer to instance with `self`
Instance variables are public

Invoked with `a.is_person()`

Inherits Animal’s methods
Override for dog years

40

Model Classes

In the later assignments, you’ll see and write model classes in PyTorch that inherit from

torch.nn.Module, the base class for all neural network modules.

import torch.nn as nn

class Model(nn.Module):
def __init__():

…

def forward():
…

41

🎯 Inner Interpreter

42

v1 = ["Eeyore", "Goofy", "Nemo", "Wall-E"]
v2 = {"Eeyore": 12, "Nemo": 2, "Goofy": 42}

m1 = v1[1:-1]

for n in m1:
 print(f"{n} is {v2[n]} years old.")

Output?

🎯 Inner Interpreter

43

v1 = ["Eeyore", "Goofy", "Nemo", "Wall-E"]
v2 = {"Eeyore": 12, "Nemo": 2, "Goofy": 42}

m1 = v1[1:-1]

for n in m1:
 print(f"{n} is {v2[n]} years old.")

>> Goofy is 42 years old.
>> Nemo is 2 years old.

Language Basics

44

Why Python?

1

Setting Up

2

Data Structures

4

Numpy

5

Python Basics

3

Practical Tips

6

Prelude: Importing Package Modules

Import ‘os’ and ‘time’ modules
import os, time

Import under an alias
import numpy as np
np.dot(x, y) # Access components with pkg.fn

Import specific submodules/functions
from numpy import linalg as la, dot as matrix_multiply
Can result in namespace collisions...

45

Now, NumPy!

● NumPy: Optimized library for matrix and vector computation

● Makes use of C/C++ subroutines and memory-efficient data structures
○ Lots of computation can be efficiently represented as vectors

46

This is the data type that you will use to

represent matrix/vector computations.

Note: constructor function is np.array()

Main data type

np.ndarray

On average, a task in Numpy is 5-100X faster than standard list!

np.ndarray

x = np.array([1,2,3])

y = np.array([[3,4,5]])

z = np.array([[6,7],[8,9]])

print(x,y,z)

print(x.shape)

print(y.shape)

print(z.shape)

>> [1 2 3]

 [[3 4 5]]

 [[6 7]

 [8 9]]

>> (3,)

>> (1,3)

>> (2,2)

A 1-D vector!

A (row) vector!

A matrix!

Note: shape (N,) != (1, N) != (N, 1)
47

np.ndarray Operations

Reductions: np.max, np.min, np.amax, np.sum, np.mean,...

48

shape: (3, 2)

x = np.array([[1,2],[3,4], [5, 6]])

shape: (3,)

print(np.max(x, axis = 1)) >> [2 4 6]

shape: (3, 1)

print(np.max(x, axis = 1, keepdims = True)) >> [[2] [4] [6]]

Always reduces

along an axis.

Or will reduce

along all axes if

not specified.

tl;dr “collapsing”

this axis into the

func’s output.

np.ndarray Operations

Infix operators (i.e. +, -, *, **, /) are element-wise.

49

Matrix vector
product (1-D
array vectors) is:

Note: SciPy and np.linalg have many, many other advanced functions that are very useful! 🥳

np.dot(x, W)

Element-wise product
(Hadamard product) of
matrix A and B, A ᐤ B, is:

A * B

Dot product is: np.dot(u, v)

Matrix product /
multiplication of
matrix A and B is:

np.matmul(A, B)
or A @ B

np.dot()can also be used, but if A and B are both
2-D arrays, np.matmul() is preferred.

Transpose is: x.T

Indexing

x = np.random.random((3, 4)) # Random (3,4) matrix

x[:] # Selects everything in x

x[np.array([0, 2]), :] # Selects the 0th and 2nd rows

x[1, 1:3] # Selects 1st row as 1-D vector

 # and 1st through 2nd elements

x[x > 0.5] # Boolean indexing

x[:, :, np.newaxis] # 3-D vector of shape (3, 4, 1)

Note: Selecting with an ndarray or range will preserve the dimensions of the selection. 50

Broadcasting

x = np.random.random((3, 4)) # Random (3, 4) matrix

y = np.random.random((3, 1)) # Random (3, 1) vector

z = np.random.random((1, 4)) # Random (1, 4) vector

x + y # Adds y to each column of x

x * z # Multiplies z (element-wise) with each row of x

Note: If you’re getting an error, print the shapes of the matrices and investigate from there.
51

Broadcasting (visually)

1 2 3 4

5 6 7 8

9 10 11 12

1

2

3

1 1 1

2 2 2

3 3 3

2 3 4 5

7 8 9 10

12 13 14 15

x + y

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

1 2 3 4

1 2 3 4

1 4 9 16

5 12 21 32

9 30 33 48

x * z
52

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing (i.e.

rightmost) dimensions and works its way left. Two dimensions are compatible when

1. they are equal, or

2. one of them is 1 (in which case, elements on the axis are repeated along the dimension)

a = np.random.random((3, 4)) # Random (3, 4) matrix
b = np.random.random((3, 1)) # Random (3, 1) vector
c = np.random.random((3,)) # Random (3,) vector

What do the following operations give us? What are the resulting shapes?

b + b.T
a + c
b + c

Broadcasting (generalized)

53

If the arrays have different ranks (number of dimensions), NumPy
implicitly prepends 1s to the shape of the lower-rank array.

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing (i.e.

rightmost) dimensions and works its way left. Two dimensions are compatible when

1. they are equal, or

2. one of them is 1 (in which case, elements on the axis are repeated along the dimension)

a = np.random.random((3, 4)) # Random (3, 4) matrix
b = np.random.random((3, 1)) # Random (3, 1) vector
c = np.random.random((3,)) # Random (3,) vector

What do the following operations give us? What are the resulting shapes?

b + b.T → (3, 3)
a + c → Broadcast Error
b + c → (3, 3)

Broadcasting (generalized)

54

If the arrays have different ranks (number of dimensions), NumPy
implicitly prepends 1s to the shape of the lower-rank array.

Broadcasting Algorithm

p = max(m, n)
if m < p:
 left-pad A's shape with 1s until it also has p dimensions
else if n < p:
 left-pad B's shape with 1s until it also has p dimensions

result_dims = new list with p elements

for i in p-1 ... 0:
 A_dim_i = A.shape[i]; B_dim_i = B.shape[i]

 if A_dim_i != 1 and B_dim_i != 1 and A_dim_i != B_dim_i:
 raise ValueError("could not broadcast")
 else:
 # Pick the Array which is having maximum Dimension
 result_dims[i] = max(A_dim_i, B_dim_i)

55

Efficient NumPy Code

for i in range(100, 1000):

 for j in range(x.shape[1]):

x[i, j] += 5

56

Avoid explicit for-loops over indices/axes at all costs. (~10-100x slowdown).

for i in range(x.shape[0]):

 for j in range(x.shape[1]):

x[i,j] **= 2

x **= 2 x[np.arange(100,1000), :] += 5

🎯 Numpy Knowhow

57

How do you create a NumPy array
with numbers from 1 to 10?

A. np.arange(1, 10)
B. np.arange(1, 11)
C. np.array(range(1, 10))
D. np.linspace(1, 10)

What does np.random.rand(3, 4)
generate?

A. A 3x4 array of random integers

B. A 3x4 array of random values

between 0 and 1

C. A 3x4 array of random values

between -1 and 1

D. A 3x4 identity matrix

🎯 Numpy Knowhow

58

How do you create a NumPy array
with numbers from 1 to 10?

A. np.arange(1, 10)
B. np.arange(1, 11)
C. np.array(range(1, 10))
D. np.linspace(1, 10)

What does np.random.rand(3, 4)
generate?

A. A 3x4 array of random integers

B. A 3x4 array of random values

between 0 and 1

C. A 3x4 array of random values

between -1 and 1

D. A 3x4 identity matrix

Language Basics

59

Why Python?

1

Setting Up

2

Data Structures

4

Numpy

5

Python Basics

3

Practical Tips

6

List Comprehensions

● Similar to map() from functional programming languages (readability + succinct)
● Format: [func(x) for x in some_list]

 squares = []
 for i in range(10):

 squares.append(i**2)

● Can be conditional:

 odds = [i**2 for i in range(10) if i%2 == 1]

60

squares = [i**2 for i
in range(10)]=

Convenient Syntax

Multiple assignment / unpacking iterables

age, name, pets = 20, ‘Joy’, [‘cat’]
x, y, z = (‘TF’, ‘PyTorch’, ‘JAX’)

61

String literals with both

single and double quotes

message = ‘I like
“single” quotes.’
reply = “I prefer
‘double’ quotes.”

Returning multiple

items from a function

def some_func():
return 10, 1

ten, one =
some_func()

Join list of strings with delimiter

“, ”.join([‘1’, ‘2’,
‘3’]) == ‘1, 2, 3’

Single-line if else

result = "even"
if number % 2
== 0 else "odd"

Debugging Tips

Python has an interactive shell where you can execute arbitrary code.

● Great replacement for TI-84 (no integer overflow!)

● Can import any module (even custom ones in the current directory)

● Try out syntax you’re unsure about and small test cases (especially helpful for matrix operations)

$ python
Python 3.9.7 (default, Sep 16 2021, 08:50:36)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
>> import numpy as np
>> A = np.array([[1, 2], [3, 4]])
>> B = np.array([[3, 3], [3, 3]])
>> A * B
 [[3 6]
 [9 12]]
>> np.matmul(A, B)
 [[9 9]
 [21 21]]

62

Helpful Commands

Ctrl-d: Exit IPython Session

Ctrl-c: Interrupt current command

Ctrl-l: Clear terminal screen

Debugging Tools

Code What it does

array.shape Get shape of NumPy array

array.dtype Check data type of array (for precision, for weird
behavior)

type(stuff) Get type of variable

import pdb; pdb.set_trace() Set a breakpoint [1]

print(f’My name is {name}’) Easy way to construct a string to print

https://docs.python.org/3/library/pdb.html
63

https://docs.python.org/3/library/pdb.html

Common Errors

ValueError(s) are often caused by mismatch of dimensions in broadcasting or
matrix multiplication. If you get this type of error, a good first step s to print out the
shape of relevant arrays to see if they match what you expect: array.shape

[Very Active, Open-Source Community] When debugging, check Ed and forums such as

StackOverflow or GitHub Issues → likely that others have encountered the same error!

64

Other Great References

Official Python 3 documentation: https://docs.python.org/3/

Official Anaconda user guide:
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

Official NumPy documentation: https://numpy.org/doc/stable/

Python tutorial from CS231N: https://cs231n.github.io/python-numpy-tutorial/

Stanford Python course (CS41): https://stanfordpython.com/#/

Several Python and library-specific (ex. NumPy) “Cheat Sheet” guides online as well!

65

https://docs.python.org/3/
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://numpy.org/doc/stable/
https://cs231n.github.io/python-numpy-tutorial/
https://stanfordpython.com/#/

Yayy, we did it! 🥳
Thanks for listening!

66

